

Worsening Creatinine Trend in the Year Prior to LVAD Implantation Is Associated with Lower Pectoralis Muscle Measures and Increased Post LVAD Mortality

V. Maharaj¹, M. Masotti², T. Murray², Austin Hoeg¹, L. Teigen³, H. Shah¹, A. Shaffer⁴,

T. Alexy¹, R. John⁴, R. Cogswell¹

1 Division of Cardiology, 2 Division of Biostatistics,

3 Division of Gastroenterology, Hepatology, and Nutrition, 4 Division of Cardiovascular Surgery,

University of Minnesota Medical Center

BACKGROUND

- The association between renal function at the time of left ventricular assist device (LVAD) implantation and post LVAD mortality has been previously established
- Cardiorenal syndrome secondary to poor organ perfusion pressure is associated with poor outcomes

PURPOSE


- To test the association between the RATE of change in renal function in the year prior to LVAD implantation and post LVAD mortality
- To test the association between the RATE of change in renal function and pre LVAD sarcopenia measures quantified by CT scan

METHODS

- Single center CF-LVAD cohort
- Inclusion criteria were patients with chest CT scans performed ≤ 3 months prior to LVAD implantation with renal function trend available for a year prior to LVAD (n=102)
- Renal function was smoothed using mixed effects modeling from 365 to 60 days prior to LVAD and a slope was calculated for each patient
- The slope of the renal function was assessed as a predictor of post LVAD mortality using multivariable cox regression

FIGURE 1: Axial computed tomographic (CT) image demonstrating measurement of unilateral pectoralis muscle

Axial CT images of the pectoralis major and minor at a level directly above the aortic arch. The image has been manually shaded using a Hounsfield unit range of –29 to 150. The program used to analyze the image produced measures of cross-sectional area in cm2 and mean Hounsfield units of the shaded area (Cogswell, Circ Heart Failure 2017).

RESULTS

TABLE 1: Patient baseline characteristics

	Trend of Renal Function Slopes by Tertiles			
	Lowest Slope n=34	Intermediate Slope n=34	Highest Slope n=34	
Renal function - 365 days (mg/dL)	1.5 +/- 0.6	1.2 +/- 0.4	1.3 +/- 0.35	0.022
Renal function - 60 days (mg/dL)	1.3 +/- 0.5	1.3 +/- 0.4	1.8 +/- 0.4	<0.001
Creatinine at implant (mg/dL)	1.16 +/- 0.4	1.2 +/- 0.5	2.0 +/- 0.6	0.001
Age (years)	57 +/- 11	56 +/- 16	61 +/- 10	0.206
Male	25 (81)	23 (77)	29 (85)	0.678
White	22 (76)	26 (90)	28(90)	
Bridge to transplant	21 (62)	25 (74)	17 (50)	0.136
Device type				0.351
HeartMate 2	22 (71)	25 (83)	21 (61)	
HVAD	2 (7)	2 (7)	5 (15)	
HeartMate 3	7 (23)	3 (10)	8 (24)	
Ischemic cardiomyopathy	17 (55)	16 (53)	24 (71)	0.288
INTERMACS Profile				0.005
1	1 (3)	2 (7)	6 (18)	
2	1 (3)	3 (10)	10 (29)	
3	13 (42)	7 (23)	5 (15)	
4+	16 (52)	18 (60)	13 (38)	
Diabetes	13 (42)	8 (27)	19 (56)	0.061
Body Mass Index (kg/m2)	27 +/- 6	29 +/- 5	30 +/- 6	0.05
Albumin (g/dL)	3.5 +/- 0.4	3.6 +/- 0.6	3.6 +/- 0.6	0.717
NT pro BNP (pg/mL)	6,075 [2,514, 9,416]	3,195 [1,912, 5,159]	8,048 [4,450, 12,550]	0.005
Fick cardiac index (L/min/m2)	2.08 +/- 0.64	1.93 +/- 0.61	2.09 +/- 0.46	0.502
Right atrial pressure (mmHg)	11.4 +/- 4.2	10.5 +/- 6.2	13.6 +/- 6.5	0.115
Pectoralis Muscle Mass Indexed (cm2/m2)	5.8 +/- 1.9	6.6 +/- 1.6	6.1 +/- 1.9	0.48
Pectoralis Hounsfield Units Mean	44.2 +/- 32.8	31.4 +/- 8.5	28.1 +/- 9.2	0.047

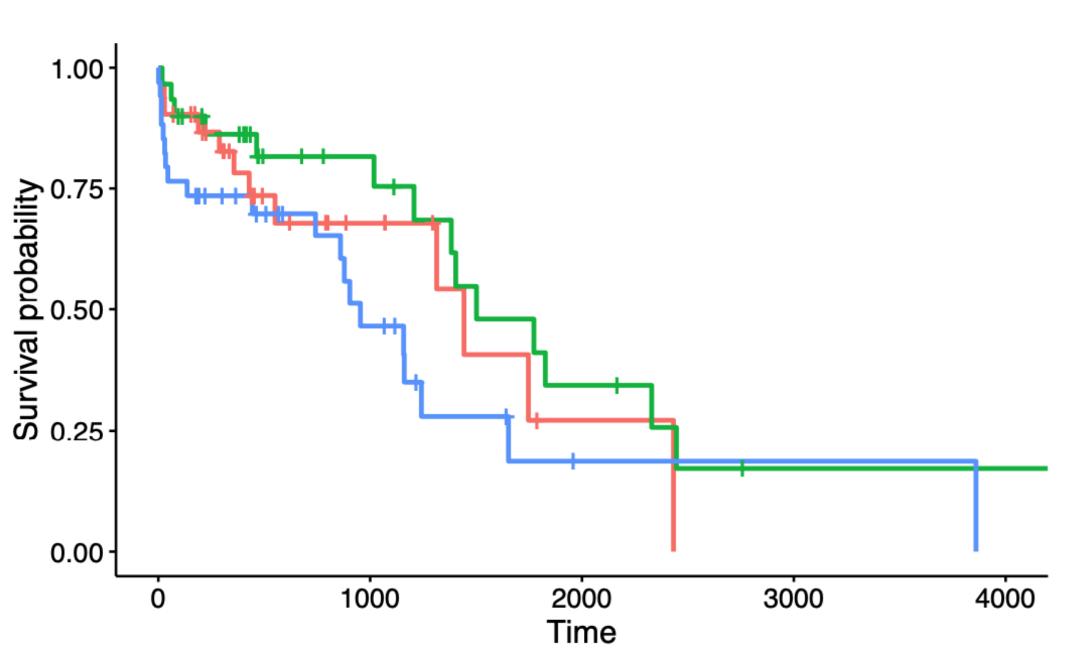
TABLE 1: Baseline characteristics of the full cohort, stratified by rate of change of renal function over 1 year prior to LVAD implantation. There was no difference in baseline age, sex, diagnosis.

FIGURE 2: Rate of change of renal function. Creatinine values were plotted and smoothed for each patient. Data was included for final analysis from 12 months up to 2 months prior to LVAD implantation.

FIGURE 3: Kaplan Meier survival curve plotted for each stratified tertile.

Tertile 3, representing the poorest renal function, showed an early decrease in survival that remained up to 5 years post LVAD implantation, when compared to the other two tertiles.

FIGURE 2: Rate of change of renal function in the year prior to LVAD implantation


Days before LVAD Patients with the largest deterioration in renal function in the year prior to LVAD were more likely to be INTERMACS 1 and 2 at the time

Each 1 mg/dl increase in creatinine between -365 days and -60 days increased the hazards rate of death after LVAD by a factor of 2.6 (adjusted HR 2.6, 95 % Cl 1.03-6.7, p = 0.04)

of surgery (Table)

 Patients with the largest decline in renal function had lower pectoralis muscle tissue attenuation by CT imaging in the 3 months prior to LVAD (Table)

FIGURE 3: Kaplan Meier survival: post LVAD mortality by pre LVAD renal trend tertile

CONCLUSIONS

- Renal function deterioration over the course of the year prior to LVAD was associated with pectoralis muscle sarcopenia and higher post LVAD mortality, even after adjustment for other variables
- The change in renal function paired with muscle tissue attenuation by CT scan may further define ideal implantation timing

