

The hole of hope: Balloon atrial septostomy for left ventricle unloading during VA ECMO

Martínez ML, Alegria S, García-Cosío M, De Juan Baguda J, Caravaca P, Blázquez Z, Sarnago F, Velázquez M, Perez de la Sota E, Eixerés A, Pérez-Vela J, Delgado Jiménez J.

ABSTRACT

arterial Veno extracorporeal membrane oxygenation (VA-ECMO) an established acute rescue for cardiogenic shock therapy (CS)(1). However, the increase in ventricle (LV) afterload left inappropriate LV associated with unloading remains an unsolved problem (2-4).Balloon atrial septostomy (BAS) is an inexpensive and effective procedure with low (2-6).Our complication rates purpose was to understand BAS effect in this setting.

OBJECTIVES

The objective of this study is to evaluate BAS results in patients with ECMO and cardiogenic shock with LV overload, through clinical and haemodynamic parameters.

METHODS

Observational retrospective study, including patients submitted to BAS for LV unload during VA-ECMO support for CS between 2018 and 2019. Inotropic use was evaluated by the Wernovsky inotropic score. Statistical analysis was performed by median comparison with Wilcoxon test for related samples.

RESULTS

Four patients with refractory CS in spite of VA-ECMO and intra aortic balloon pump (n=3) or Impella (n=1) were included. The median age was 55.5 years (IQR 46.8-64.3) and 75% were male. The basal median LV ejection fraction was 29.5%. All had severe mitral regurgitation with ischemic heart disease (n=3) or severe aortic

<u>Table 1</u> – Evolution of patients submitted to percutaneous balloon atrioseptostomy.

Variables	Pre (median)	Pos (median)	р
ECMO flow (ml/min)	3.1	3.0	0.715
LV end-diastolic diameter index (mm/m2)	61.5	62.0	0.593
LV outflow tract VTI (cm)	8.0	11.6	0.109
LA mean pressure (mmHg)	33.5	16.5	0.068
RA mean pressure (mmHg)	9.0	7.0	0.109
LA-RA pressure gradient (mmHg)	23.5	8.5	0.068
Systolic PAP (mmHg)	52.0	29.0	0.465
Diastolic PAP (mmHg)	25.5	15.5	0.144
Medium PAP (mmHg)	35.0	20.0	0.144
Mixed venous saturation (%)	63.5	78.5	0.068
PaO2/FiO2 ratio	145.0	472.5	0.109
Lactate level (mmol/l)	1.95	1.30	0.068

stenosis (n=1). BAS was performed after a median time of 8 days (IQR 5.5-12.0) after **ECMO** with a dimension of 5 mm (IQR 5.0-5.0). The reduction in left atrial pressure led to resolution of pulmonary edema in all patients. There was hemodynamic improvement lower inotropic use in 75% of patients (median difference -0,6; p= 1.00), and reduction in pulmonary pressures and lactate levels. increase in LV outflow tract (LVOT) velocity time integral (VTI) and in PaO2/FiO2 ratio was documented. After a follow-up of 25.5 days (IQR 12.8-45.8) half of the patients were VA-ECMO from weaned or transplanted. One procedure was complicated by femoral a haematoma.

CONCLUSIONS

Percutaneous BAS is a simple and effective procedure to treat refractory pulmonary edema during VA-ECMO The support. improvement in LV performance, documented by the increase in LVOT VTI, is likely due to improvement in intracavitary pressures and a better oxygenation.

REFERENCES

- 1. Lawler et al. Extracorporeal membrane oxygenation in adults with cardiogenic shock. Circulation. 2015;131(7):676–80.
- 2. Strunina et al. Left ventricle unloading during veno-arterial extracorporeal membrane oxygenation. Curr Res Cardiol. 2016;3(1):5–8.
- 3. Donker et al. Left ventricular unloading during veno-arterial ECMO: A simulation study. ASAIO J. 2019;65(1):11–20.
- 4. Seib et al. Blade and balloon atrial septostomy for left heart decompression in patients with severe ventricular dysfunction on extracorporeal membrane oxygenation. Catheter Cardiovasc Interv. 1999;46(2):179–86.
- 5. Pasrija et al. Atrial Septostomy: An Alternative for Left Ventricular Unloading During Extracorporeal Life Support. Ann Thorac Surg. 2018;105(6):1858.
- 6. Leurent G, Auffret V. TCT-823 Percutaneous Balloon Atrial Septostomy for Left Ventricle Unloading in Patients Under ECLS. J Am Coll Cardiol 2019;74(13):B806.