

UNDERSTANDING THE RELATIONSHIPS OF CARDIAC DIAGNOSTICS IN PATIENTS WITH AMYLOID TRANSTHYRETIN CARDIAC AMYLOIDOSIS

Bennett Di Giovanni¹, Dakota Gustafson^{2,3}, Mitchell B. Adamson^{1,2}, Kyle Runeckles³, Diego H. Delgado^{1,2}

¹Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto ²Toronto General Hospital Research Institute, University Health Network ³Department of Laboratory Medicine and Pathobiology, University of Toronto ⁴Rogers Computational Program, Ted Rogers Centre for Heart Research

Disclosures

Dr. Diego Delgado is a member of the Canadian Advisory Board for Akcea, Pfizer, and Alnylam pharmaceuticals. In addition, he is a principal investigator for ATTR-ACT (NCT01994889), ATTR-ACT Extension, and ENDEAVOUR (NCT02319005) studies. Furthermore, Dr. Delgado receives funding in the form of a research grant from Pfizer Global for studying novel biomarkers of ATTR amyloidosis.

The other authors have no disclosures.

Background

- Amyloid transthyretin (ATTR) cardiac amyloidosis (CA) is an increasingly recognized cause of:
 - restrictive cardiomyopathy
 - heart failure with preserved ejection fraction (HFpEF)
- Patients often experience delayed diagnosis
- Limited interpretation of routine cardiac testing in ATTR-CA, including:
 - Cardiac biomarkers (troponins, brain natriuretic peptide (BNP))
 - Echocardiography
- Technetium-99m pyrophosphate (^{99m}Tc-PYP) scintigraphy is increasingly used for non-invasive diagnosis of ATTR-CA

Background

- ATTR-CA is divided into two major subtypes
 - Wild-type (no mutation)
 - Variant (also referred to as hereditary)
- In both subtypes, amyloid fibrils form, aggregate/deposit and damage tissues

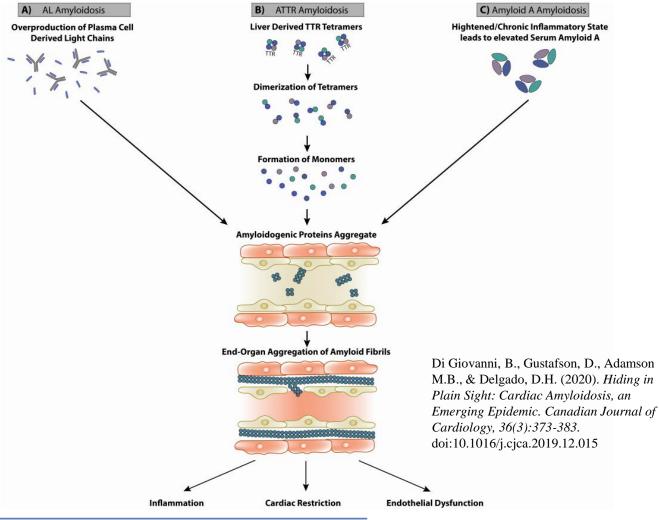
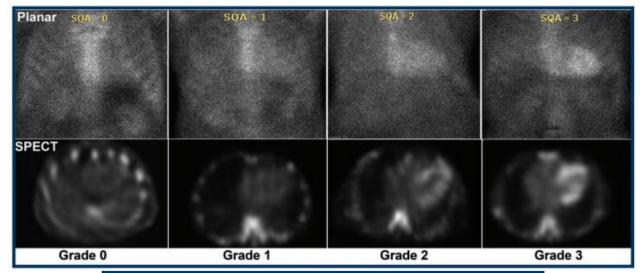
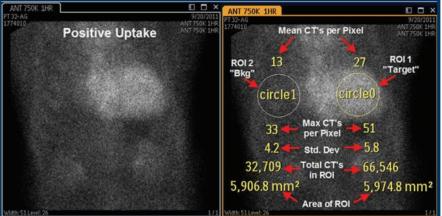


Table 1. Differences in presentation of ATTR amyloidosis in relation to genotype.

Wild-type	References	Variant	References
 Elderly Predominantly cardiac involvement Generally asymptomatic (sporadic cardiac symptoms) Disease process progresses slowly No identified TTR gene mutation 		 Early or late onset Predominantly neurological and/or cardiac involvement Symptomatic (symptoms experienced often reflect variant) Neuropathy can be autonomic, sensory, and motor Disease process generally progresses slowly Identified TTR gene mutation which is considered pathogenic (autosomal dominant inheritance) 	[7,8]


Di Giovanni, B., Gustafson, D., & Delgado, D. H. (2019). *Amyloid transthyretin cardiac amyloidosis: diagnosis and management. Expert Review of Cardiovascular Therapy, 1*–9. doi:10.1080/14779072.2019.1662723


99mTc-PYP Scintigraphy for ATTR-CA

- Semi-quantitative visual grading
 - ^{99m}Tc-PYP originally developed as bone radiotracer
 - Grading visually compares uptake in the heart to uptake in bone
 - Grade 0-3 (Grade 2 and 3 are considered indicative of ATTR-CA)
- Quantitative ratio heart to contralateral (H/CL) ratio
 - Direct comparison of uptake to produce numeric ratio
 - H/CL ratio is considered suggestive of ATTR-CA when ≥1.5

99mTc-PYP Scintigraphy for ATTR-CA

- Grade 0 : no myocardial uptake, normal bone
- Grade 1 : myocardial uptake < rib
- Grade 2 : myocardial uptake = rib
- Grade 3: myocardial uptake > rib

Objective

■ We sought to investigate the relationship of cardiac diagnostics to standard of care non-invasive imaging modalities.

Methods

- Single-center retrospective cohort study
- Adult patients (≥18 years old) diagnosed with an identified genetic variant in the transthyretin (TTR) gene or ATTR-CA
 - We included wild-type and variant cases of ATTR-CA
- The association between PYP grade (0-3), H/CL ratios, echocardiographic variables, and cardiac biomarkers (troponin and BNP) was investigated using linear regression models

Results

 Among 140 cases, 83 utilized a PYP scan as part of their diagnostic workup

Grade compared to biomarkers:

- The association between PYP grade and presenting troponin was statistically significant for grades 1-3, using grade 0 as the referent
 - Median for Grade 1 was 79 ng/L [IQR 37-115].
 - Median for Grade 2 was 92 ng/L [IQR 10-237]
 - Median for Grade 3 was 92.5 ng/L [IQR 45-187].
- Presenting BNP which demonstrated no correlation between PYP Grade and presenting values

Results

Ratio compared to biomarkers:

 H/CL ratio did not show any statistically significant correlation with presenting biomarkers

Ratio compared to echocardiography:

- H/CL ratio was significantly positively correlated with left ventricular mass (g) 88.14 [95% CI; 41.66-134.62] (p<0.001)
- H/CL ratio was correlated with interventricular septal thickness at end diastole (IVSd;cm) 0.33 [95% CI; 0.17-0.49] (p<0.001)

Limitations

- Lack of documentation or loss of follow up before investigations completed
- Paradigm shift to a predominantly non-invasive diagnosis more apparent in recent years as opposed to endomyocardial biopsy in past
- 99mTc-PYP scintigraphy reports differ in layout and clinician interpretation based on site and experience
- Only BNP was available, no measurements of N-terminal prohormone BNP
- Cardiology specialist site, referrals may be skewed to more symptomatic patients with significant cardiac involvement

Conclusion

- We found troponins were correlated with PYP grade in patients with ATTR-CA
- Higher presenting troponins and IVSd were associated with a higher PYP grade and PYP ratio respectively
- There may be a role for scintigraphy in management of HFpEF cases of unknown etiology to rule in/out ATTR-CA
- Combinatorial approach to diagnosing ATTR-CA is essential

Future Directions

- Further evaluation of diagnostic tools in ATTR-CA, in both symptomatic and asymptomatic patients
- Continued analysis of cardiac investigations including imaging and biomarkers within patients with ATTR-CA to strengthen associations
- Consider ATTR-CA in the differential diagnosis for HFpEF and follow appropriate diagnostic algorithms; earlier diagnosis may help provide more opportunity to trend biomarkers, echocardiographic variables and scintigraphy, as well as provide available treatment options
- Continued evaluation of current and new cardiac biomarkers which may aid in earlier diagnosis or provide prognostic value