

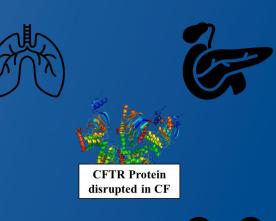
The Effect of the Cystic Fibrosis Care Center on Lung Transplant Outcomes

Aravind Krishnan, Errol L Bush MD, Alexis Chidi MD PhD, Eric P Nolley MD, Sean Agbor-Enoh MD PhD, Natalie West MD, Erin Tallarico, Jonathan Orens MD, Jinny S Ha MD, Pali D Shah MD, Dorry Segev MD PhD, Allan Massie PhD, Robert SD Higgins MD MHS, Christian A. Merlo MD MPH

> Johns Hopkins University School of Medicine Department of Surgery Division of Thoracic Surgery

April 28, 2020

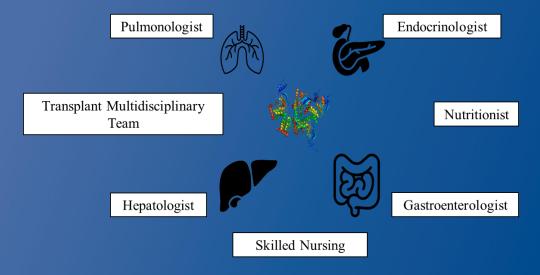
Presented by: Aravind Krishnan


Disclosures

- I have no disclosures
- CM and PS receive research funding from the Cystic Fibrosis Foundation
- This funding was not used directly for the purposes of this research

Cystic Fibrosis

- Most common lethal genetic mutation in Caucasian population
- Results in:
 - respiratory failure
 - pancreatic insufficiency
 - liver disease
 - failure to thrive
- Patients with CF account for ~10% of US adult lung transplant volume



Multidisciplinary Care for Cystic Fibrosis

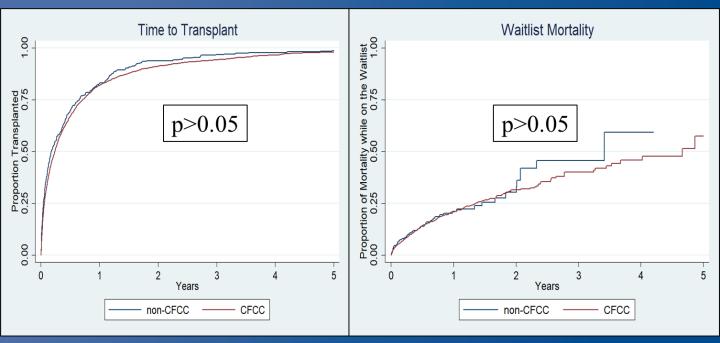
 Cystic Fibrosis Care Centers (CFCCs) are accredited by the Cystic Fibrosis Foundation based on their ability to provide comprehensive care for CF patients

- It is unclear how outcomes after lung transplant for CF patients at CFCCs compare to non-CFCCs
- We hypothesize that CF patients who receive a lung transplant at CFCCs experience superior graft survival compared to those transplanted at non-CFCCs

Methods

- Scientific Registry of Transplant Recipients used to identify all first-time, adult (18 years and older) double lung-transplant recipients for a diagnosis of CF, from May 2005 to June 2018 (LAS era).
- Primary Exposure: Transplantation at a CFCC
- Primary Outcome: Graft Failure (death or retransplantation for graft dysfunction)

Analysis

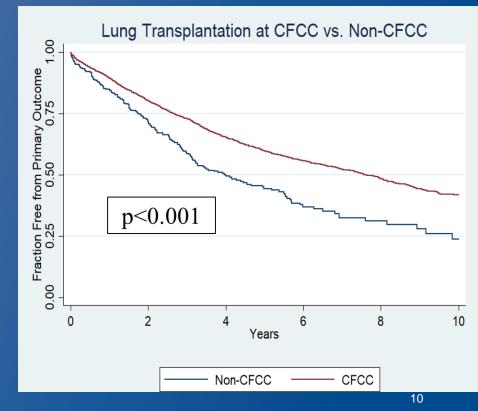

- Multivariate model included all variables that demonstrated univariate association with primary outcome (P<0.20), and then optimized using AIC
- Adjusted 2-tiered mixed-effects parametric survival analysis used to assess outcomes
 - 1st tier: Center-level factors– status as a CFCC, annual volume of lung transplants for CF, and use of induction immunosuppression
 - 2nd tier: Patient-level factors- recipient: race, age, sex, functional status, total bilirubin, use of ECMO prior to transplant, FEV₁, BMI; donor: age, high creatinine

Patients

- 2,573 patients transplanted at 68 centers
- 50/68 centers were CFCCs (73.5%)
- Majority of patients transplanted at CFCCs (87.9%)
- At baseline, patients were similar

Characteristic	CFCC (n=2263)	non-CFCC (n=310)	p Value
Recipient Characteristics			
Age at Transplant: mean (SD)	32.2 (9.8)	30.9 (10.5)	0.014
Male: N (%)	1153 (51.0)	168 (54.2)	0.28
Ethnicity: N (%)			0.003
Caucasian	2158 (95.4)	285 (91.9)	
African American	40 (1.8)	4 (1.3)	
Hispanic	61 (2.7)	19 (6.1)	
Other (including Asian, mixed race,	4 (0.2)	2 (0.6)	
Native American)			
BMI: mean (SD)	19.8 (3.0)	19.6 (3.2)	0.21
Lung Allocation Score: mean (SD)	49.9 (18.1)	48.9 (18.2)	0.36
Total Bilirubin: mean (SD)	0.45 (0.8)	0.45 (0.5)	0.88
FEV1 at Transplant: mean (SD)	24.9 (13.6)	24.8 (12.3)	0.88
Average Functional Capacity at	50% (30%-60%)	50% (30%-60%)	0.18
Transplant: Median (IQR)			
ECMO prior to Transplantation: N (%)	136 (6.0%)	15 (4.8%)	0.41
Waitlist Time (days): Median (IQR)	87 (22-262)	65.5 <mark>(16-24</mark> 0)	0.10
Donor Characteristics			
Age: mean (SD)	32.5 (13.4)	31.1 (11.8)	0.10
High Creatinine: N (%)	400 (17.7)	73 (23.6)	0.012
Center Characteristics			
Annual Volume: median (IQR)	5.6 (3.4-9.7)	2.5 (1.8-3.0)	<0.001
Induction N (%)	1386 (61.3)	192 (61.9)	0.82
Region: N (%)			<0.0001
Northeast	482 (21.3)	18 (5.8)	
Midwest	482(21.3)	17 (5.5)	
South	903 (39.9)	203 (65.5)	
West	396(17.5)	72 (23.2)	

Waitlist Survival and Time-to-Transplant Similar at CFCCs and non-CFCCs



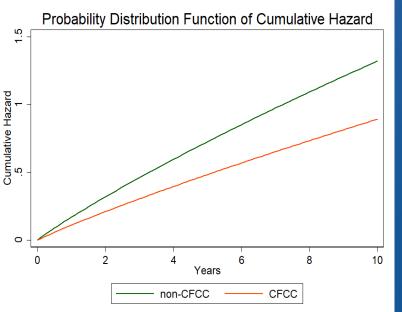
Graft Survival- Unadjusted Kaplan johnshopkins Meier Analysis

Median survival

- CFCC: 8 years

Non-CFCC: 4 years

4/28/2020


Adjusted Parametric Survival Analysis

Transplantation at a CFCC is associated with a 33% reduced risk of mortality (p<0.001)

	•		
	Hazard Ratio	P Value	95% CI
Tier 1 Center Level			
Cystic Fibrosis Care Center	0.67	< 0.001	0.56-0.82
Annual Volume	0.98	0.200	0.97-1.01
Induction	0.87	0.023	0.77-0.98
Tier 2 Patient Level			
Race			
Caucasian	REF		
African American	1.58	0.027	1.05-2.38
Hispanic	0.87	0.459	0.59-1.26
Other	1.66	0.60	0.41-6.7
Male Sex	1.06	0.34	0.94-1.20
Donor Age	1.01	0.031	1.00-1.01
Donor High Creatinine	0.90	0.23	0.76-1.07
Recipient BMI	0.98	0.20	0.96-1.01
Recipient Age at Transplant	0.97	< 0.001	0.96-0.98
ECMO prior to Transplantation	1.06	0.74	0.75-1.49
Recipient Functional Status	0.99	0.058	0.99-1.00
Recipient Total Bilirubin	1.09	0.006	1.03-1.16
Recipient FEV1 at Transplant	0.99	0.044	0.99-1.00

Cumulative Hazard after Lung Transplant at a CFCC vs. non-CFCC

Weibull distribution function used to generate cumulative hazard of loss of graft after transplantation at a CFCC vs. non-CFCC.

 Cumulative hazard is consistently lower at CFCCs (P<0.001)

4/28/2020

Sub-Analysis: Hypothesis Generation

- Examined transfer from transplant center to another center during follow-up as an exposure variable
- 108 patients included
- Limited by small numbers, and no indication for reason for transfer

	Hazard Ratio	P value	95% CI
Interfacility Transfer			
CFCC to CFCC	Ref		
non-CFCC to CFCC	1.15	0.74	0.50-2.61
non-CFCC to non-CFCC	3.15	0.057	0.97-10.24
CFCC to non-CFCC	2.06	0.035	1.05-4.05
Race			
Caucasian	Ref		
African American	0.83	0.86	0.10-7.16
Hispanic	1.39	0.68	0.29-6.7
Male Sex	1.15	0.64	0.63-2.09
LAS	1.003	0.77	0.98-1.03
Donor Age	0.98	0.16	0.96-1.01
Donor High Creatinine	0.69	0.34	0.33-1.46
Recipient BMI	0.95	0.47	0.84-1.08
Recipient Age at Transplant	0.97	0.087	0.94-1.00
Recipient Functional Status	0.99	0.081	0.97-1.01
Recipient Total Bilirubin	1.17	0.461	0.77-1.78
Recipient FEV1 at Transplant	1.00	0.727	0.98-1.03

Conclusion

- Transplantation at a CFCC is associated with improved survival after lung transplant for cystic fibrosis
- CFCCs provide comprehensive, CF-specific expertise, which may contribute to improved graft survival
- Post-transplant follow-up at a CFCC may play a role in improved graft survival