Transcriptome Analysis of Airway Brushes in Lung Transplant Recipients with and without Chronic Lung Allograft Dysfunction

<u>C Iasella</u>, M Snyder, I Popescu, J Wei, A Hoji, Y Zhang, W Xu, V Iouchmanov, M Brown, E Lendermon, B Johnson, S Kilaru, M Morrell, J Pilewski, J Greenland, K Chen, J McDyer

Disclosures

- I will not discuss off label use and/or investigational use of drugs/devices
- All authors have no relevant financial relationships related to this presentation

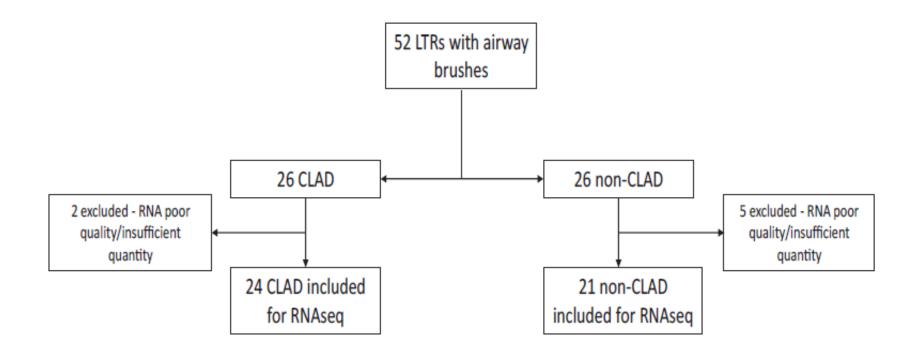
Background

- Chronic lung allograft dysfunction (CLAD) is the major complication limiting long-term survival in lung transplant recipients (LTRs)
- CLAD is diagnosed using spirometry and the exclusion of other pathologies and generally responds poorly to augmentation of conventional immunosuppressive therapy
- The immunopathogenesis of CLAD and its clinical endotypes remain poorly understood
- There is a major need in the lung transplant field to identify novel early molecular pathways to diagnose early CLAD

- To address the pathogenesis of CLAD at the molecular level, we performed RNA-seq analysis of airway brush samples in LTRs with and without CLAD
- We hypothesized the airway transcriptome would reflect key immunologic changes in disease

Study Design

- Single center, cross-sectional study
- Patients were lung transplant recipients identified from an institutional registry and biorepository
- Transbronchial brush samples were obtained during clinical bronchoscopies


Methods

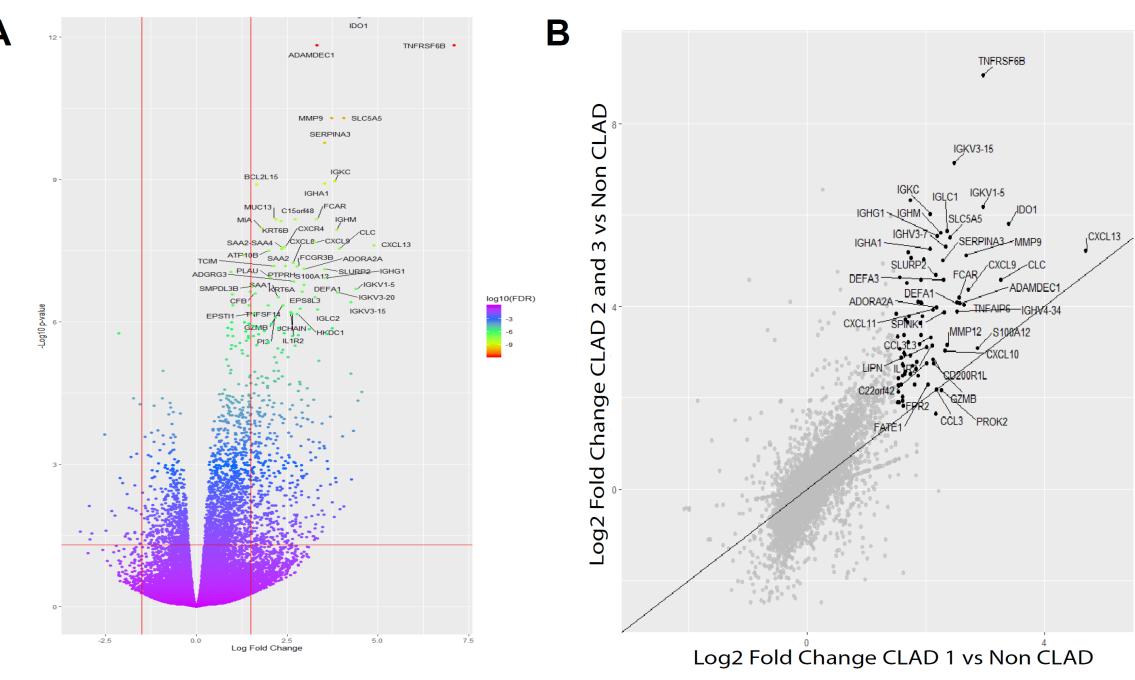
- Total RNA was isolated and stranded total RNA-seq libraries were prepared following ribosomal RNA depletion with Illumina reagents
- Libraries were sequenced with an Illumina Nextseq500 sequencer with a depth of paired-end 40 million read pairs per sample
- Reads were aligned to hg38 human genome
- Transcript counts and differential expression analysis were carried out using the CLC Genomics Workbench.

Results

12 brushes from control patients were used to evaluate the cellular populations in brush samples and found that epithelial cells were the predominant population (59%), followed by monocyte/ macrophages (30%), with lymphocytes and NK cells comprising the minority balance of cells

Cohort Characteristics

	CLAD (n=24)	Control (n=21)	p-value
Age at transplant (median, IQR)	52.5 (34.75-62.75)	54 (37.0-63.5)	0.59
Female (n, %)	10 (41.7%)	10 (47.6%)	0.16
Transplant Diagnosis			0.91
Interstitial Lung Disease (n, %)	9 (37.5%)	7 (33.3%)	
Cystic Fibrosis (n, %)	7 (29.2%)	7 (33.3%)	
Chronic Obstructive Pulmonary Disease (n, %)	7 (29.2%)	6 (28.6%)	
Re-transplant (n, %)	1 (4.2%)	1 (4.8%)	
Congenital (n, %)	1 (4.2%)	0	
Acute Rejection (n, %)	9 (37.5%)	3 (14.3%)	0.11
Acute Infection (n, %)	13 (52.4%)	0	<0.01
Bacterial	10	-	
Viral	1	-	
Fungal	2		
Days to CLAD (median, IQR)	1645 (1133-1981)	-	
CLAD Stage (n, %)			
CLAD 1	15 (62.5%)	-	
CLAD 2	3 (12.5%)	-	
CLAD 3	6 (25.0%)	-	
CLAD 4 Sburgh	0		


Top 25 Upregulated Genes

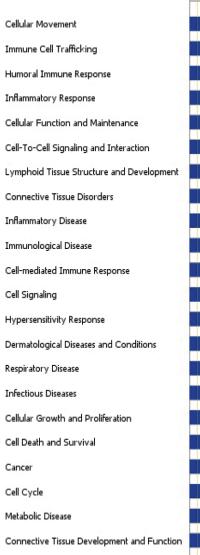
CLAD vs Non-CLAD

Gene	Fold Change	FDR p-value
IDO1	22.32	<1.00E-13
ADAMDEC1	9.99	1.49E-12
TNFRSF6B	137.19	1.49E-12
SLC5A5	16.68	5.10E-11
MMP9	13.18	5.10E-11
SERPINA3	11.63	1.69E-10
IGKC	14.03	1.10-09
IGHA1	11.55	1.21E-09
BCL2L15	3.18	1.28E-09
MUC13	4.56	6.84E-09
C15orf48	6.59	6.84E-09
FCAR	9.92	6.84E-09
KRT6B	5.03	7.54E-09
MIA	3.51	1.05E-08
IGHM	14.52	1.16E-08
CXCL9	9.65	2.11E-08
CXCL13	29.65	2.47E-08
CXCR4	5.35	2.66E-08
SAA2-SAA4	5.21	2.66E-08
CLC	15.35	2.88E-08
SAA2	5.10	2.94E-08
ATP10B	4.00	3.18E-08
CXCL8	6.41	5.68E-08
TCIM	4.41	6.73E-08

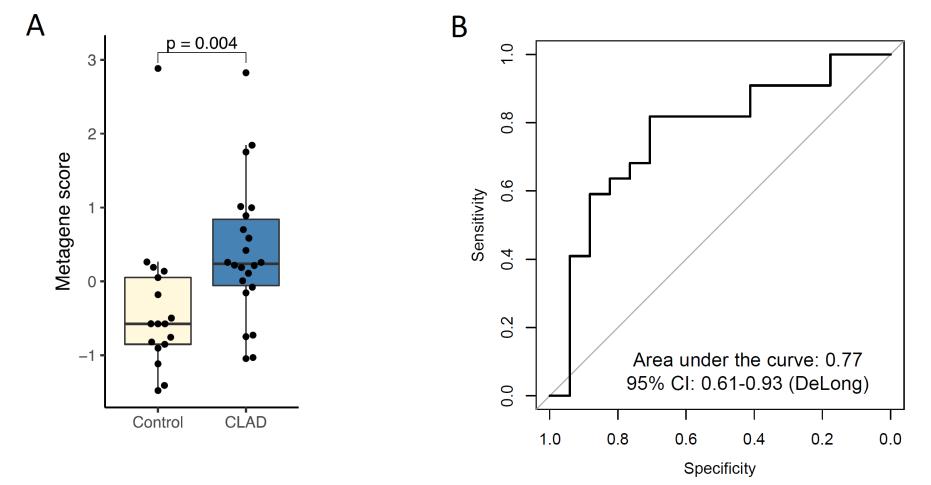
 $\boldsymbol{\omega}$


Upstream Regulators

Upstream Regulator	Predicted Activation State	Activation z-score	p-value of overlap
TNF-α	Activated	7.017	2E-21
IL1- β	Activated	6.412	7E-30
IFN-γ	Activated	6.013	8E-20
IL-6	Activated	5.941	3E-23
NFκβ (complex)	Activated	5.921	4E-20
IL1- α	Activated	5.308	5E-22
MYD88	Activated	4.957	8E-15
CSF2	Activated	4.793	2E-17
IL-2	Activated	4.631	8E-16
TLR3	Activated	4.565	2E-12



Α



B

-log(p-value) Three Sold 10

Validation Cohort

The top 25 genes from the study cohort were used to classify CLAD in the external validation cohort. As a group, these genes were significantly upregulated in the CLAD patients in the validation cohort.

Conclusions

- The airway transcriptome demonstrated a predominant Type-1 immune activation signature in a cross-sectional study of CLAD versus stable LTRs
- Pathway analysis of the airway transcriptome predicts upregulation of TNF- α , IFN- γ , and IL-1 β as the predominant immune mediators
- Further analyses may provide the rationale for testing select immune targets in CLAD as biomarkers and further defining distinct immune endotypes within CLAD

