

<u>Cerebrovascular Autoregulation is Altered</u> During Pediatric cfVAD Support

JA Spinner¹, I Adachi², KK Kibler³, C Rusin¹, SC Tume⁴, EB Mossad³, DB Andropoulos³, BA Elias², H Tunuguntla¹, AG Cabrera¹, JF Price¹, SW Denfield¹, WJ Dreyer¹, KM Brady³

1 - Cardiology, Pediatrics, Baylor College of Medicine, Houston, TX. 2 – Congenital Heart Surgery, Baylor College of Medicine, Houston, TX. 3 - Pediatric Cardiovascular Anesthesiology, Baylor College of Medicine, Houston, TX. 4 – Critical Care, Pediatrics, Baylor College of Medicine, Houston, TX.

BACKGROUND

- Cerebrovascular autoregulation maintains relatively constant cerebral blood flow (CBF) over a range of blood pressures, and it prevents cerebral ischemia/hyperemia from pressure-passive CBF
- Impaired cerebrovascular autoregulation is associated with mortality *in adults* with traumatic brain injury and with perioperative stroke *in adults* during cardiopulmonary bypass
- Maintaining blood pressure within a range that optimizes CBF autoregulation is associated with improved outcomes *in adults* at risk of cerebral ischemia
- Children on continuous-flow ventricular assist device (cf-VAD) support are at risk for neurological complications
- The cerebrovascular impact of long-term cfVAD support in children is unknown

SPECIFIC AIMS

- 1) To determine if persistently attenuated pulse pressure with cfVAD negatively influences the preservation of cerebrovascular autoregulation
- 2) To measure the change in optimal mean arterial pressure (MAPopt) for cerebrovascular autoregulation after long-term cfVAD support

METHODS

- Cerebrovascular autoregulation can be measured using the Hemoglobin Volume Index (HVx), which represents the relationship between relative tissue hemoglobin (a surrogate for cerebral blood
- MAP_{OPT} is derived from the nadir of the curve fit of HVx across a range of blood pressures (Figure 1B)²
- MAP and cortical hemoglobin density (derived from cerebral
- volume; CBV) and mean arterial pressure (MAP)
- HVx: cerebral near-infrared spectroscopy (NIRS)-derived index (-1 to 1)
- When cerebrovascular autoregulation is functional, HVx is negative or near zero because MAP and CBV are either not correlated or negatively correlated (Figure 1A)¹

Figure 1A: Calculation of HVx

- NIRS) were synchronously recorded during cfVAD implant and/or explant to determine HVx and MAP_{OPT} values
- cfVAD implant and explant HVx and MAP_{OPT} values were then compared to each other

Figure 1B: Calculation of MAP_{OPT}

RESULTS

- Sufficient data to determine HVx and MAPopt were available in 13 cfVAD implants and 6 cfVAD explants (median support duration of 268 days; IQR 73-385)
- Cerebrovascular autoregulation was intact in all subject recordings (both at implant and explant; **Table 1**)
- MAPopt was significantly higher at implant vs explant (Figure 2A)
- This phenomenon was confirmed for 3 patients with MAPopt assessment at both implant and explant; individually paired implantexplant data showed a consistent decline in MAPopt following longterm cfVAD support (Figure 2B)

Table 1: cfVAD Implant vs Explant

	IMPLANT (n = 13)	EXPLANT (n=6)	p - value
Age (years; median/IQR)	12.1 (8.9 – 15.9)	10.1 (8.3 – 17.5)	0.90

Height (cm; median/IQR)	152.5 (127.0 – 168.5)	123.0 (121 – 170.75)	0.42
Weight (kg; median/IQR)	45.7 (28.2 – 70.9)	24.5 (23.2 - 66.1)	0.60
DCM (n, %)	8 (62%)	3 (50%)	1.0
HVx at MAPopt (median, IQR)	-0.05 (-0.18 – 0.02)	-0.06 (-0.18 – 0.19)	1.0

Figure 2A: Implant vs Explant MAP_{opt} in cfVAD 85 90 80 MAP_{opr} (mmHg) 80 75 MAP_{OPT} (mmHg) 70 70.2 70-65 p=0.044 60 57.3 55 50 50 45 40 40 Implant **Explant**

Figure 2B: Paired Implant-Explant MAP_{opt} in cfVAD

CONCLUSIONS

- Long-term, non-pulsatile circulation with cfVAD support does not appear to impair the ability to autoregulate CBF
- CBF autoregulation is optimized at a higher MAP in children with heart failure (implant) than children supported with cfVAD (explant)
- This emphasizes the importance of individualized blood pressure management strategies to optimize brain perfusion in patients supported with long-term cfVAD