Adherence to Early Postoperative Bridging Anticoagulation Protocols Is Linked to Degree of Clinical Compromise

Katie A. Frankel PA-C, David Nemer MD, Jessica Rimsans PharmD, Erin Lyons PA-C, Maneka Puligandla, Donna Neuberg ScD, Michael M. Givertz MD, Gregory S. Couper MD, Jean M. Connors MD, Garrick C. Stewart MD *Center for Advanced Heart Disease Brigham and Women's Hospital, Boston, MA*

INTRODUCTION

Early post-operative parenteral bridging anticoagulation has been identified as a key component in care pathways to prevent LVAS pump thrombosis.¹ We conducted a single-center analysis of initial postoperative anticoagulation practices to identify barriers to implementation of standard anticoagulation protocols following LVAS.

OBJECTIVES

- Describe early post-operative anticoagulation practices following HeartMate (HM) II implant from 2009-2014.
- Determine patient characteristics and clinical management factors associated with specific anticoagulation practices following HM II implant.
- Identify gaps in post-op anticoagulation and key team members to help implement standard anticoagulation protocols follow LVAS implementation to help prevent pump thrombosis.

Table 1. Baseline Characteristics

Characteristic	n=105
Age at time of implant (yrs)	56 ± 13
Male	85 (81%)
BMI (kg/m2)	26.9 ± 5.5
Implant strategy	
Bridge to transplantation	49 (47%)
Bridge to candidacy	16 (15%)
Destination therapy	40 (38%)
Ischemic etiology of heart failure	47 (45%)
Diabetes	43 (41%)
Cardiovascular comorbidities	
Prior MI/PCI	45 (43%)
Prior stroke or TIA	17 (16%)
Atrial fibrillation/flutter	60 (57%)
Thromboembolic history	
Prior venous thromboembolism	20 (19%)
Prior LV thrombus	22 (21%)
Prior LA thrombus	8 (8%)
CHA2DS2-VASc score	3.2 ± 1.5
Prior cardiac surgery	29 (28%)
Chronic kidney disease	46 (44%)
INTERMACS profile	
1	9 (9%)
2	63 (60%)
3	21 (20%)
4	12 (11%)
Creatinine (mg/dL)	1.4 ± 0.5
Mechanical ventilation	5 (5%)
Inotropic support	88 (84%)
Temporary MCS	29 (28%)
CPB time (min)	130 ± 73
ICU length of stay (days)	7 (5,12)
Pump speed at discharge (rpm)	9265 ± 413

METHODS

Data were collected on 105 consecutive primary HM II LVAS recipients at a single center from 2009-14.² Immediate post-implantation anticoagulation was characterized in relation to standardized protocol recommended by the manufacturer, which specified early use of intravenous heparin until the INR is therapeutic along with aspirin.³ Frequency of parenteral bridging anticoagulation; use of early bridging (\leq 3 days postimplant), and achievement of therapeutic bridging (PTT at target each of first 3 days) were analyzed.

RESULTS

Overall, 73 (70%) of patients were treated with a parenteral anticoagulation bridge following device implantation and 32 (30%) received unopposed warfarin. Only 50 (48%) received an early bridge with 29 (28%) achieving an early therapeutic bridge. Initial parenteral anticoagulant was unfractionated heparin 75% and bivalirudin for 25% of patients, with median time to bridge initiation of 3 days (range 1-7). Patients receiving a parenteral bridge had lower INTERMACS profile (p=0.04) and longer intensive care unit length of stay (p<0.01). There was no difference in red cell transfusion rate or reoperation by bridging status.

Table 2. Comparisons of clinical variables andfrequency of pump thrombosis according to type ofinitial post-operative parenteral anticoagulation bridge

	Any Bridge (n=73)		Early (n=50)		Therapeutic (n=38)		Early Therapeutic (n=29)	
	No. (%) or Median (range)	p	No. (%) or Median (range)	p	No. (%) or Median (range)	p	No. (%) or Median (range)	p
Prior cardiac surgery (n=76)	52 (71)	0.81	35 (70)	0.67	26 (68)	0.50	19 (66)	0.34
INTERMACS profile ²		0.04		<0.01		0.05		0.03
1	7 (10)		7 (14)		2 (5)		2 (7)	
2	48 (66)		35 (70)		27 (71)		21 (72)	
3	9 (12)		3 (6)		3 (8)		1 (3)	
4	9 (12)		5 (10)		6 (16)		5 (17)	
CPB time (min)	121 (24-442)	0.87	118 (26- 442)	0.86	120 (24-432)	0.91	120 (26-432)	0.85
ICU length of stay	9 (2-84)	<0.01	8 (2-84)	0.30	8 (4-84)	0.47	8 (4-84)	0.42
Delayed chest closure (n=35)	29 (72)	0.17	19 (76)	0.25	12 (63)	0.76	10 (67)	1.0
Time to reoperation (days)	2 (0-26)	0.39	2 (0-21)	0.14	3 (1-21)	0.42	3 (1-21)	0.43
RBC transfusion (n=35)	28 (38)	0.12	16 (32)	0.84	14 (37)	0.67	20 (69)	0.82
Time to RBC (days)	1 (1-31)	0.06	1 (1-31)	0.65	1 (1-9)	0.16	1 (1-9)	0.43
All confirmed pump thrombosis (n=25)	19 (26)	0.47	13 (26)	0.65	8 (21)	0.81	7 (24)	1.0
Early confirmed pump thrombosis (n=14)	10 (14)	1.0	7 (14)	1.0	3 (8)	0.25	3 (10)	0.75

P-values are for comparisons between patient cohorts that did and did not receive the type of parenteral bridge indicated (data from each corresponding cohort no shown).

Abbreviations: MCS, mechanical circulatory support; INTERMACS profile, Interagency Registry for Mechanically Assisted Circulatory Support; CPB, cardiopulmonary bypass; ICU, intensive care unit; RBC, red blood cell

CONCLUSIONS

- There was only 70% adherence to post-operative bridging anticoagulation in this real-world analysis, validating the common clinical tension between preventing thromboembolism and risk of bleeding in this complex post-operative population.
- Use of parenteral bridging was more common in patients with indices of more severe clinical compromise.
- Integrating team members focused on hemostasis and antithrombotic stewardship may bridge gaps in early anticoagulation management following LVAS.

References

1. Maltais S, et al. J Hear Lung Transplant. 2017;36:1-12.

2. Nemer D et al. J Heart Lung Trans J Heart Lung Trans 2017;36:S254

3. HeartMate II Left Ventricular Assist System: Instructions for Use. 10006960.B. 2017.

Disclosures

There are no relevant financial relationships to disclose.