

Ambulatory Status Improves Outcomes in Patients Bridged to Lung Transplantation with ECMO

Katherine Bailey, BS; Amit Iyengar, MS; Oh Jin Kwon, BS; Manuel Caceres Polo, MD; Christian Eisenring, MSN; David Ross, MD; Abbas Ardehali, MD

Division of Cardiac Surgery, Division of Pulmonology, David Geffen School of Medicine at UCLA

Background

 Patients with respiratory failure refractory to conventional therapy may undergo extracorporeal membrane oxygenation (ECMO) as a bridge to lung transplantation (BTT).

 However, these patients may have significantly increased post-transplant morbidity with the associated deconditioning from critical illness.

Results

Variables	Ambulatory ECMO (N=14)	Non-ambulatory (N=7)	p-value
Recipient Age (years)	48.3 ± 13.6	40.3 ± 17.9	0.313
Body Mass Index (kg/m ²)	23.3 ± 5.2	20.2 ± 4.4	0.233
Male Gender	50%	57.1%	0.562
Diagnosis Category			0.127
A – Obstructive	0%	0%	
B – PPH	7.1%	0%	
C – Cystic Fibrosis	7.1%	42.9%	
D – Restrictive	85.8%	57.1%	
Lung Allocation Score	87.2 ± 7.4	82.6 ± 14.9	0.550
Wait Time (days)	54.3 ± 108	54.7 ± 98	0.794
ECMO Duration (days)	13.4 ± 9.8	14.6 ± 10.0	0.794
Preoperative Comorbidities			
Diabetes Mellitus	14.3%	28.6%	0.574
Hyperlipidemia	14.3%	0%	0.533
GERD	14.3%	71.4%	0.017
Cytomegalovirus Positive	64.3%	57.1%	0.751
Immunosuppression	57.1%	42.9%	0.659
Preoperative Pulmonary Status			
FEV ₁ (%)	48.9 ± 12.5	36.8 ± 18.9	0.206
FVC (%)	49.5 ± 9.9	41.0 ± 12.3	0.133
DLCO (%)	47 ± 17.1	31.2 ± 12.2	0.079
Preoperative Heart Catherization			
Systolic PAP (mmHg)	60.1 ± 30.1	35.2 ± 13.2	0.165
Diastolic PAP (mmHg)	27.4 ± 13.5	14.5 ± 8.2	0.087
PCWP (mmHg)	13.8 ± 6.2	5.5 ± 2.4	0.016
Donor Age (years)	39.5 ± 13.3	28.0 ± 15.0	0.097
Donor Body Mass Index (kg/m ²)	35.6 ± 7.4	22.1 ± 4.3	0.064
Intraoperative Characteristics			
Ischemia Time (min)	304 ± 77	258 ± 64	0.179
CPB Time (min)	179 ± 36	169 ± 26	0.653

Discussion

- In selected patients, ECMO support as a bridge to transplant may be successfully utilized with excellent short- and intermediate-term results.
- Ambulatory status is associated with trends towards decreased intensive care unit and hospital length of stay despite

 The purpose of this study was to assess the impact of ambulatory status on patients bridged to transplantation with ECMO.

Methods

- Retrospective analysis of UCLA's lung transplant database was performed between Jan 2010 and Dec 2016.
- Medical and physical therapy records of all patients who received ECMO as a BTT were reviewed and ambulatory status was queried.
- Differences between groups were assessed via chi-squared and Kruskal-Wallis tests.
- Survival analysis was performed via Kaplan-Meier method, with censoring at 5-year.

Values presented as mean ± standard deviation or percent of population.

CPB = cardiopulmonary bypass; ECMO = extracorporeal membrane oxygenation; FEV₁ = forced expiratory volume in one second; FVC = forced vital capacity; GERD = gastroesophageal reflux disease; PAP = pulmonary artery pressure; PCWP = pulmonary capillary wedge pressure; PPH = primary pulmonary hypertension.

similar preoperative comorbidities.

- The ideal cannulation strategy for candidates for transplant with respiratory failure remains unknown.
- ECMO strategies to allow for ambulation may allow for continued physical therapy and conditioning while awaiting available donor organs, and may lead to improved outcomes.

Limitations:

- Retrospective, single-center design without external validation.
- Small number of ECMO BTT patients limits statistical power of analyses.
- Unable to assess for differences between venoarterial and venovenous ECMO given low power.

Transplant Recipients
Jan 2010– Dec 2016
(N = 21)Ambulatory
ECMO
(N = 14)Non-ambulatory
(N = 7)

ECMO as BTT Lung

Variables	Ambulatory ECMO (N=14)	Non- ambulatory (N=7)	p-value
PGD @ 0-Hr	• •		0.682
0/1	78.5%	85.7%	
2	14.3%	0%	
3	7.2%	14.3%	
PGD @ 24-Hr			0.299
0/1	76.9%	85.7%	
2	23.1%	0%	
3	0%	14.3%	
PGD @ 48-Hr			0.368
0/1	85.7%	85.7%	
2	14.3%	0%	
3	0%	14.3%	
PGD @ 72-Hr			0.368
0/1	85.7%	85.7%	
2	14.3%	0%	
3	0%	14.3%	
Tracheostomy	21.4%	14.3%	0.694
Vent Time (days)	3 (2-5)	5 (1-7)	0.762
ICU LOS (days)	8 (6-15)	13 (9-30)	0.135
Hospital LOS (days)	17 (15-28)	24 (18-44)	0.155

ICU = intensive care unit; LOS = length of stay; PGD = primary graft dysfunction.

Conclusions

Lung transplantation can be safely performed utilizing ECMO as a bridge to lung transplantation with acceptable outcomes. ECMO strategies that allow for ambulation should be utilized in order to allow for continued work with physical therapy and improved post-transplant outcomes.

Further studies are warranted to identify optimal measures of patient conditioning prior to transplant.

Disclosures

No authors for this presentation have relevant financial interests to disclose.