Identification of leukocyte subpopulations as potential biomarkers of long-term survival with normal allograft function after lung transplantation

Mendoza-Valderrey A1; Saez B2; Hernandez-Fuentes MP1; Pereira-Veiga T1; Escobar R1; Berastegui C1; Rebollo-Mesa I1; Sole A1; Zurbano F1; de la Torre M1; Laporta R1; Redel J1; Gomez-Olles S1,8; Román A1,8

1 Lung Transplant Unit, Hospital Universitario Vall d’Hebron, Barcelona, Spain. 2 Experimental Immunobiology, Division of Transplantation Immunology & Mucosal Biology, Medical Research Council Centre for Transplantation, King’s College London, London, United Kingdom. 3 Cystic Fibrosis and Lung Transplant Unit, Hospital Universitario La Fe, Valencia, Spain. 4 Pulmonology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain. 5 Lung Transplant Unit, Hospital Universitario Reina Sofia, Córdoba, Spain. 6 Ciber Enfermedades Respiratorias (Ciberes).

Introduction

Long-term survival after lung transplantation (LT) is limited by the development of chronic lung allograft dysfunction (CLAD). Despite this fact, a small number of lung transplant recipients are long-term survivors with a good allograft function (LTS).

A study of this particular population could be a first step to search for transplant tolerance biomarkers that can lead to the reduction of immunosuppressive drugs in treatment plans and improve personalized medicine. The objective of this study was to identify leukocyte subpopulations as potential biomarkers of LTS after lung transplantation.

Patients & Methods

Sixty-two double lung transplant recipients were included in this multicenter cross-sectional study: 31 patients with CLAD and 31 patients with stable lung allograft function after 10 years from LT (LTS).

Six leukocyte profiling panels computing 4 to 10 markers were used for whole blood leukocyte subset profiling by flow cytometry. The percentages of the different leukocyte subpopulations were compared between both groups.

Results

Leukocyte subsets that significantly differ between LTS and CLAD groups are summarized in Table 1.

![Figure 1: Quantitative differences of leukocyte subpopulations between LTS and CLAD groups.](Image)

<table>
<thead>
<tr>
<th>Leukocyte Subsets (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocytes CD14+CD16+</td>
<td>86.9/83.5</td>
</tr>
<tr>
<td>NK cells CD56+CD16-</td>
<td>15.6/6.2</td>
</tr>
<tr>
<td>T cells CD4+CD8+</td>
<td>1.8/0.8</td>
</tr>
<tr>
<td>Granulocytes CD62L+</td>
<td>99.8/98.8</td>
</tr>
</tbody>
</table>

LTS: Long-term survivors; CLAD: Chronic lung allograft dysfunction; NK: Natural killer.

Conclusions

These results suggest that CD14+CD16+ monocytes, CD56+CD16- NK cells, CD4+CD8+ T cells and Vδ1+ T cells could be potential biomarkers of long-term allograft survival in lung transplant patients.

Acknowledgements

This study has been funded by Instituto de Salud Carlos III through the project “PI13/01076” (Co-funded by European Regional Development Fund/European Social Fund “Investing in your future”), FUCAP, Astellas, Novartis and Chiesi.

No relationships to disclosure