

Bronchiolitis Obliterans Syndrome in Lung Transplantation: A Predictive Model

Artyom Khurshudyan, BS; Amit Iyengar, MS; Oh Jin Kwon, BS; Manuel Caceres Polo, MD; Christian Eisenring, MSN; David Ross, MD; Abbas Ardehali, MD

Division of Cardiac Surgery, Division of Pulmonology, David Geffen School of Medicine at UCLA

Background	Results			Discussion	
 Chronic allograft rejection and bronchiolitis obliterans syndrome 	Variables	Hazard Ratio (95% CI) (N=888)	p-value	 BOS remains a prevalent cause of mortality following lung 	
(ROS) are the leading causes of	Recipient Age (years)	1.01 (1.00-1.02)	0.007	trancolontation with a poolod	
(DOS) are the leading causes of	Body Mass Index (kg/m ²)	1.03 (1.01-1.05)	0.014		
late mortality among lung	Diagnosis Category			incidence of approximately 50%	
transplant recipients.	A – Obstructive	0.96 (0.77-1.19)	0.676	among long-term survivors.	
	B – Primary Pulmonary Hypertension	1.69 (0.97-2.94)	0.065		
Identification of motionto ot rick for	C – Cystic Fibrosis	0.54 (0.31-0.93)	0.028	Of all factors, realizing the DNAL was the	
 Identification of patients at risk for 	D – Restrictive	Ref		• Of all factors, recipient Bivil was the	

BOS may allow for prophylactic measures to be tailored appropriately.

• We sought to develop a predictive model for BOS-free survival following lung transplantation.

Methods

- Retrospective analysis of UCLA's lung transplant database was performed.
- Analysis was limited to primary adult lung transplant recipients (age \geq 18) transplanted between 1999-2016.

Lung Allocation Score	1.00 (0.99-1.01)	0.601
Single Lung Transplantation	1.33 (1.07-1.66)	0.011
Wait Time (days)	1.00 (1.00-1.00)	0.412
Diabetes Mellitus	1.15 (0.91-1.46)	0.254
Gastroesophageal Reflux Disease	1.09 (0.99-1.19)	0.099
Preoperative Labs		
Hemoglobin (g/dL)	1.04 (0.99-1.10)	0.095
Albumin (g/dL)	0.78 (0.63-0.95)	0.016
Alanine Aminotransferase (U/L)	1.00 (1.00-1.01)	0.092
Preoperative Pulmonary Status		
Mechanical Ventilation	0.63 (0.34-1.18)	0.148
Extracorporeal Membrane Oxygenation	0.45 (0.14-1.39)	0.163
Forced Expiratory Volume in one second (%)	1.00 (1.00-1.01)	0.138
Forced Vital Capacity (%)	1.00 (1.00-1.01)	0.194
Donor Characteristics		
Age (years)	1.00 (1.00-1.01)	0.202
Female Donor	0.86 (0.71-1.03)	0.100
Smoking History	1.35 (1.10-1.66)	0.004
Donor Cytomegalovirus Positive	1.17 (0.95-1.45)	0.150
Donor Cause of Death		
Stroke	Ref	
Head Trauma	1.08 (0.78-1.49)	0.648
Anoxia	1.03 (0.69-1.52)	0.902
Central Nervous System Tumor	0.87 (0.27-2.79)	0.808
Other	0.59 (0.97-1.00)	0.060
Intraoperative Characteristics		
Concomitant Cardiac Surgery	1.21 (0.98-1.49)	0.075
Ischemia Time (min)	1.00 (0.99-1.00)	0.354
Cardiopulmonary Bypass Time (min)	1.00 (1.00-1.01)	0.470

strongest predictor of BOS.

- The developed model strongly stratifies patients by risk of posttransplant BOS with good predictive power.
- Subsequent prophylactic prevention strategies and early intervention may improve outcomes in high risk cohorts.

Limitations:

- Retrospective, single-center design without validation.
- Prolonged follow-up time with inability to capture subtle changes in treatment practices over time.

Follow-up pulmonary function tests were queried via chart review and BOS-free survival at 5 years was utilized as the primary end point.

Multivariable Cox hazard regression modeling was utilized to identify preoperative, operative, and donor factors predictive of BOS development.

 A predictive score was then calculated based on hazard ratio weights, and receiver operating characteristic analysis was utilized to assess model performance.

Univariate Cox Regression Modeling

BOS-Free Survival at 5 Years

Variables	Odds Ratio [95% CI]	p-value	Score
Single Lung Transplant	1.47 (1.13-1.92)	0.004	1
BMI ≥ 35 kg/m²	7.69 (2.40-2.46)	0.001	8
Albumin ≤ 3 g/dL	1.93 (1.01-3.69)	0.045	2
Donor Age ≥ 45 years	1.30 (0.99-1.70)	0.061	1
Donor Smoking History	1.44 (1.11-1.87)	0.006	1
Donor CMV	1.32 (0.99-1.75)	0.055	1

Multivariable Model and Scoring System

Conclusions

The developed BOS predictive model can be utilized to help identify lung transplant recipients at high-risk for BOS development posttransplant.

Further studies are needed to provide external validation and include post-transplant acute rejection and infection episodes.

Disclosures

No authors for this presentation have relevant financial interests to disclose.